Biologically Derived Nanoparticle Arrays via an Electrochemical Reconstitution of Ferritin and Their Applications
نویسندگان
چکیده
ABSRACT Nanoparticle arrays biologically derived from an electrochemicallycontrolled site-specific biomineralization were fabricated on a gold substrate through the immobilization process of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, the fabrication of self-assembled arrays with the immobilized ferritin, and the electrochemical characterization of various core materials. Protein immobilization on the substrate is achieved by anchoring ferritins with dithiobis-N-succinimidyl propionate (DTSP). A reconstitution process of electrochemical site-specific biomineralization with a protein cage loads ferritins with different core materials such as Pt, Co, Mn, and Ni. The ferritin acts as a nano-scale template, a biocompatible cage, and a separator between the nanoparticles. The nano-sized metalcored ferritins on a gold substrate displayed a good electrochemical activity for the electron transport and storage, which is suitable for bioelectronics applications such as biofuel cell, bionanobattery, biosensors, etc.
منابع مشابه
Electrochemical reconstitution of biomolecules for applications as electrocatalysts for the bionanofuel cell
Platinum-cored ferritins were synthesized as electrocatalysts by electrochemical biomineralization of immobilized apoferritin with platinum. The platinum cored ferritin was fabricated by exposing the immobilized apoferritin to platinum ions at a reduction potential. On the platinum-cored ferritin, oxygen is reduced to water with four protons and four electrons generated from the anode. The ferr...
متن کاملElectrochemically controlled reconstitution of immobilized ferritins for bioelectronic applications
Site-specific reconstituted nanoparticles were fabricated via electrochemicallycontrolled biomineralization through the immobilization of biomolecules. The work reported herein includes the immobilization of ferritin with various surface modifications, the electrochemical biomineralization of ferritins with different inorganic cores, and the electrocatalytic reduction of oxygen on the reconstit...
متن کاملINKJET DEPOSITED SILVER NANOPARTICLE ELECTRODES
Silver nanoparticles are being given considerable attention because of their interesting properties and potential applications. One such exploitable use is as the major constituent of conductive inks and pastes used for printing various electronic components. This paper presents a novel direct-writing process for fabrication of the first deposited silver nanoparticles (AgNPs) (50-200nm) elec...
متن کاملEndophytes: Toward a Vision in Synthesis of Nanoparticle for Future Therapeutic Agents
The development of reliable processes for the synthesis of Nanoparticles is an important aspect of nanotechnology. Biologically synthesized nanoparticles could have innumerable applications in different areas such as reception, catalyzers, biolabellers, etc. In the present review, we emphasize the richness of the microbial world which encompasses a plethora of endophytic entities as an emerging...
متن کاملDesign of Highly Uniform Platinum and Palladium Nanoparticle Decoration on TiO2 Nanotube Arrays: An Efficient Anode to the Electro-Oxidation of Alcohols
We explore electro-catalytic properties of a system consisting of platinum and palladium nanoparticles dispersed over a nanotubular self-organized TiO2 matrix. These electrodes prepared by electroess and microemulsion of palladium and palladium nanoparticles on to TiO2 nanotubes, respectively. Titanium oxide nanotubes were fabricated by anodizing titanium foil in ethylene glycol (EG) fluoride-c...
متن کامل